In this lesson, we will make a program where if the ball goes off the bottom of the screen, you lose a life. The ball will then go back to the middle of the screen.
In this lesson, we will make a program where if the ball goes off the bottom of the screen, you lose a life. The ball will then go back to the middle of the screen.
Before you start coding, let's check how the tests look now.
Run this command in your terminal:
pytest module-1.3/blueprint-5/quest-40
You will see that some tests are not passing yet. This is normal because you haven't written the code for them.
Here are the tests that are not passing:
test_ball_in_bounds_state_unchanged
test_ball_out_of_bounds_decrements_lives_and_resets
test_ball_exactly_at_boundary_is_in_bounds
test_lives_decrement_from_different_start_value
Now, let's write the code for main.py
.
In main.py
, you will check if the ball has gone off the screen. If it has, you will reduce the number of lives and move the ball back to the center.
Here are some general examples of how you might check a ball's position and update lives:
# Example: Check if ball is off-screen
ball_y_position = 450
screen_bottom_edge = 400
if ball_y_position > screen_bottom_edge:
print("Ball is off-screen!")
# Example: Decrement lives
lives = 3
lives = lives - 1 # Or lives -= 1
print(f"Lives left: {lives}")
# Example: Reset ball position
ball_x = 0
ball_y = 0
screen_center_x = 300
screen_center_y = 200
ball_x = screen_center_x
ball_y = screen_center_y
print(f"Ball reset to: ({ball_x}, {ball_y})")
class Ball:
def __init__(self, x, y):
self.x = x
self.y = y
def reset_position(self, center_x, center_y):
self.x = center_x
self.y = center_y
Now that you've written your code, let's check if it works!
Run this command in your terminal:
pytest module-1.3/blueprint-5/quest-40
If your code is correct, all the tests should now pass.
Here are the tests that should pass:
test_ball_in_bounds_state_unchanged
test_ball_out_of_bounds_decrements_lives_and_resets
test_ball_exactly_at_boundary_is_in_bounds
test_lives_decrement_from_different_start_value
Pygame allows you to render text onto the screen using fonts. This is essential for displaying information like scores, lives, or game messages.
The process involves:
pygame.init()
, but pygame.font.init()
is specific).Font
object.Surface
.Rect
for the text surface to position it.import pygame
# Example: Font creation
# Use None for the default font, specify size
font = pygame.font.Font(None, 36)
# Example: Rendering text
# Arguments: text string, anti-aliasing (True/False), color
text_surface = font.render("Hello, Pygame!", True, (255, 255, 255)) # White text
# Example: Positioning text
text_rect = text_surface.get_rect()
text_rect.topleft = (10, 10) # Position at (10, 10)
# Example: Drawing text (inside the game loop)
# screen.fill((0, 0, 0)) # Fill background
# screen.blit(text_surface, text_rect)
# pygame.display.flip()
[Image/Gif: Show a simple Pygame window with static text rendered in the corner.]
Game state refers to the current condition of the game, such as the player's score, remaining lives, or the game's overall status (playing, paused, game over). These are typically stored in variables.
To update the display of these variables, you need to:
# Example: Initial state
score = 0
lives = 3
# Example: Updating state based on an event (inside game logic)
# if collision_with_brick:
# score += 10
# if ball_went_off_bottom:
# lives -= 1
# Example: Re-rendering text after state change (inside game logic or drawing)
# Assuming 'font' and 'screen' are defined
score_text_surface = font.render(f"Score: {score}", True, (255, 255, 255))
lives_text_surface = font.render(f"Lives: {lives}", True, (255, 255, 255))
# Example: Drawing updated text (inside drawing phase)
# screen.blit(score_text_surface, (10, 10))
# screen.blit(lives_text_surface, (screen_width - lives_text_surface.get_width() - 10, 10))
[Image/Gif: Show a score counter incrementing or a lives counter decrementing.]
Game logic often depends on specific conditions being met. For example, a score should only increase when a collision occurs, or a life should only be lost when the ball goes off-screen. if
statements are used to check these conditions and execute code accordingly.
Common conditions involve checking:
sprite.rect.colliderect(other_sprite.rect)
).ball.rect.bottom >= screen_height
).if lives <= 0
).# Example: Checking for ball going off bottom (inside game logic)
# Assuming 'ball' object and 'screen_height' constant exist
if ball.rect.bottom > screen_height:
# This condition is true when the ball is below the screen
print("Ball missed!")
# Trigger actions like losing a life and resetting the ball
# lives -= 1
# ball.reset_position()
# Example: Checking for collision (inside game logic)
# Assuming 'ball' and 'paddle' objects exist
if ball.rect.colliderect(paddle.rect):
print("Ball hit paddle!")
# Trigger actions like bouncing the ball
# ball.speed_y *= -1
[Image/Gif: Show a ball hitting the bottom edge and disappearing, or hitting a paddle and bouncing.]
For games with distinct phases (like a title screen, playing, game over), a simple state machine can manage which logic and drawing code runs. A variable (e.g., game_state
) holds the current state, and if/elif/else
statements control the flow.
# Example: Initializing state
game_state = 'playing' # Possible states: 'playing', 'game_over'
# Example: State transition (inside game logic)
# if lives <= 0:
# game_state = 'game_over'
# Example: Logic and Drawing based on state (inside main loop)
# if game_state == 'playing':
# # Update ball, paddle, check collisions, etc.
# ball.move()
# paddle.move(keys)
# # ... collision checks ...
#
# # Draw playing elements
# screen.fill(BLACK)
# ball.draw(screen)
# paddle.draw(screen)
# # ... draw bricks, score, lives ...
#
# elif game_state == 'game_over':
# # Stop movement (implicitly done by not calling move() above)
#
# # Draw game over screen
# screen.fill(BLACK)
# # ... draw 'GAME OVER' text, final score ...
[Image/Gif: Show a transition from the active game screen to a static "GAME OVER" screen.]
A complete game loop combines all the elements: event handling, updating game state variables, moving objects, checking collisions, managing game state transitions, and drawing everything to the screen. The main loop iterates continuously, performing these steps in order for each frame.
The structure typically looks like:
# Initialize Pygame, screen, clock, game state, objects
# Main game loop
running = True
while running:
# 1. Event Handling (check for quit, key presses)
for event in pygame.event.get():
# ... handle events ...
# 2. Game Logic (based on current state)
# if game_state == 'playing':
# Update object positions (ball.move(), paddle.move())
# Check collisions (ball-paddle, ball-brick)
# Update score/lives based on collisions/misses
# Check for win/lose conditions and update game_state
# elif game_state == 'game_over':
# Handle game over screen logic (e.g., wait for restart input)
# 3. Drawing
screen.fill(background_color)
# if game_state == 'playing':
# Draw all active game objects (paddle, ball, bricks)
# Draw score and lives text
# elif game_state == 'game_over':
# Draw game over message and final score
# 4. Update Display
pygame.display.flip()
# 5. Control Frame Rate
clock.tick(FPS)
# Quit Pygame
[Image/Gif: Show a full, simple Breakout game loop running.]
pygame.mixer
Sound effects enhance the game experience by providing audio feedback for events like collisions.
Steps to add sound:
pygame.mixer.init()
). This is separate from pygame.init()
..wav
, .ogg
, etc.) into a Sound
object (pygame.mixer.Sound("path/to/sound.wav")
). It's good practice to handle potential errors if the file is missing.sound_object.play()
).import pygame
# Example: Initialize mixer (after pygame.init())
# pygame.init()
pygame.mixer.init()
# Example: Load sound file
try:
bounce_sound = pygame.mixer.Sound("assets/bounce.wav")
except pygame.error as e:
print(f"Could not load sound file: {e}")
# Create a dummy object if loading fails to prevent crashes
class DummySound:
def play(self): pass
bounce_sound = DummySound()
# Example: Play sound on event (inside game logic)
# if ball.rect.colliderect(paddle.rect):
# ball.speed_y *= -1
# bounce_sound.play() # Play the sound here
[Image/Gif: Show a visual representation of a sound wave playing when a collision happens.]
Refactoring is the process of restructuring existing computer code without changing its external behavior. The goal is to improve nonfunctional attributes of the software, such as readability, maintainability, and simplicity.
Common refactoring techniques include:
# Example: Before Refactoring (simplified)
# def calculate_total(prices, tax, discount_percent):
# subtotal = 0
# for p in prices:
# subtotal += p
# discount_amount = subtotal * (discount_percent / 100)
# discounted_total = subtotal - discount_amount
# tax_amount = discounted_total * tax
# final_price = discounted_total + tax_amount
# return final_price
# Example: After Refactoring (using extracted functions and better names)
# DEFAULT_TAX_RATE = 0.08
# DEFAULT_DISCOUNT_PERCENTAGE = 10
# def calculate_subtotal(item_prices):
# """Calculates the sum of all item prices."""
# return sum(item_prices)
# def apply_discount(amount, discount_percentage):
# """Applies a discount to a given amount."""
# discount_amount = amount * (discount_percentage / 100.0)
# return amount - discount_amount
# def apply_tax(amount, tax_rate):
# """Applies tax to a given amount."""
# tax_amount = amount * tax_rate
# return amount + tax_amount
# def process_order(item_prices, tax_rate=DEFAULT_TAX_RATE, discount_percentage=DEFAULT_DISCOUNT_PERCENTAGE):
# """Processes a customer's order."""
# subtotal = calculate_subtotal(item_prices)
# discounted_total = apply_discount(subtotal, discount_percentage)
# final_price = apply_tax(discounted_total, tax_rate)
# return final_price
Refactoring makes code easier to understand, test, and modify in the future. It's an ongoing process, not a one-time task.